Postembryonic proliferation in the spiny lobster antennular epithelium: rate of genesis of olfactory receptor neurons is dependent on molt stage.
نویسندگان
چکیده
Olfactory systems undergo continuous growth and turnover in many animals. Many decapod crustaceans, such as lobsters and crayfish, have indeterminate growth, and in these animals, turnover of both peripheral and central components of the olfactory system occurs continuously throughout life. In this study, we examine the dynamics of olfactory receptor neuron (ORN) proliferation in the antennule of the Caribbean spiny lobster, Panulirus argus, using in vivo incorporation of the cell proliferation marker BrdU. We show that addition of ORNs occurs in a "proximal proliferation zone" (PPZ), which exists on the proximo-lateral margin of the existing ORN population. The PPZ is spatially and temporally dynamic in that it travels as a wave in the proximal and lateral directions in the antennule. This wave results in continuous addition of ORNs throughout the molt cycle. The rate of proliferation, as measured by the size and shape of the PPZ, changes depending on the animal's molt stage. The rate is highest during premolt and lowest during intermolt. ORNs are the most prominent cell-type produced in the PPZ, but other cell types, including glia, are also produced. Patches of proliferating epithelial cells occur immediately proximal to the PPZ, suggesting that neuronal and glial precursors reside in this region. Possible mechanisms for peripheral and central modulation of ORN development are discussed.
منابع مشابه
Structural plasticity in the olfactory system of adult spiny lobsters: postembryonic development permits life-long growth, turnover, and regeneration
Caribbean spiny lobsters ( Panulirus argus ) rely on their sense of olfaction for many behaviours. Growth of their olfactory systems, and maintenance of olfactory function, is ensured by structural change that occurs continuously throughout life. In this paper, we review recent studies on postembryonic development in the olfactory system of P . argus and several other decapod species. Major str...
متن کاملSelective ablation of antennular sensilla on the Caribbean spiny lobster Panulirus argus suggests that dual antennular chemosensory pathways mediate odorant activation of searching and localization of food.
In spiny lobsters and other decapod crustaceans, odorant-mediated searching behavior patterns are driven primarily by chemosensory neurons in the antennules. Two groups of antennular chemosensory neurons can be distinguished on the basis of the sensilla that they innervate and their central projections: those that innervate the aesthetasc sensilla on the lateral flagella and project into the gl...
متن کاملAmputation-induced activity of progenitor cells leads to rapid regeneration of olfactory tissue in lobsters.
Lobsters have a self-renewing olfactory system and, like many animals, continuously replace old or dying olfactory receptor neurons. In addition, lobsters are able to regenerate the peripheral olfactory system even after complete loss. The olfactory sensors in lobsters are located distally on a pair of antennules. These antennules are often damaged, but this has little impact on the lobster's s...
متن کاملAdult Neurogenesis in the Spiny Lobster, Panulirus Argus: Molecular, Cellular, and Physiological Changes of Olfactory Receptor Neurons
Adult neurogenesis of olfactory receptor neurons (ORNs) occurs in diverse organisms including in decapod crustaceans. This dissertation describes the molecular, cellular, and physiological changes that occur during adult neurogenesis of ORNs in the antennular lateral flagellum (LF) of the spiny lobster Panulirus argus. Examination of the role of splash (spiny lobster achaete scute homolog) in a...
متن کاملLocalized ablation of olfactory receptor neurons induces both localized regeneration and widespread replacement of neurons in spiny lobsters.
The peripheral olfactory system of the spiny lobster Panulirus argus--located on paired antennules--undergoes continual postembryonic development. This process includes continuous addition of olfactory receptor neurons (ORNs) related to indeterminate growth, continuous replacement, and regeneration when necessitated by damage. We have shown previously that new olfactory tissue is continually ad...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurobiology
دوره 47 1 شماره
صفحات -
تاریخ انتشار 2001